Monitoring the penalization/advantage of lexical ambiguity in vector model representations

Guillermo Jorge-Botana, Ricardo Olmos & José A. León
Universidad Autónoma de Madrid
Extensional definition of lexical ambiguity

- Two criteria for categorizing the phenomenon
 - Representation of meanings
 - Separate vs. single representation of senses
 (Homonymy, Polysemy, Metonymy, Metaphors…)
 - **Contextual distribution of word occurrences**
 - Occurrences across few or many contexts
Representation of senses

- **Separate senses** (Klein & Murphy, 2001).

- **A common core with specific parts**
 (Rodd, Gaskell & Marslen-Wilson, 2002; Klepousniotou & Baum, 2006).

- **Unique representation as in LSA models** (Kintsch, 2001; Kintsch & Mangalath, in press).
Contextual distribution of word occurrences

- **Polysemy**: Polysemic words have greater Contextual Diversity than monosemic.

Since **Abstract** words have greater Contextual Diversity than Concrete words …

- **Can abstractness** be a kind of lexical ambiguity?
Concept of Context Diversity in Vector-Models

The vectors that represent the words inside a Vector-Space (as in LSA) can be a measure of indices such as Context Diversity.

Measuring the thematic focus, for example with entropy formula.

www.elsemantico.com
Current Study

So what can a model such as LSA tell us about some of the empirical effects related to lexical ambiguity?

- A model of a unique lexical representation
- An exclusively linguistic model.
Current Study

- Effects related to lexical ambiguity
 1. Associative difficulty
 2. Lexical Decision Task
1. Associative difficulty

- For polysemic words: difficulty generating meaning without a context (Duffy, Morris, & Rayner, 1988)

- Abstract words rarely have semantic relations (they predominantly have associative relations) (e.g. Crutch, 2006; Crutch, Ridha, & Warrington, 2006; Crutch & Warrington, 2005; Warrington & Crutch, 2007; Crutch & Warrington, 2005; Duñabeitia et al., 2009)
Associative difficulty for LSA

The similarity decreases

Main sense

The other sense

Polysemy

Penalization

Monosemy

Monosemy

A

B

C

D

E

F

G

www.elsemantico.com
2. Data with LDT

- Polysemy advantage (Hino & Lupker, 1996; Pexman & Lupker, 1999)
- Concrete advantage
- The response to LDT is task dependent
- It is favored by unspecific activation mediated by semantic representations (Piercey & Joordens, 2000)
LDT with LSA

- Ambiguous vectors have difficulty with main relations but an advantage with other relations.
- This is due to the distributional properties of the vectors.
- This advantage with other relations can produce non-specific activation, improving LDT response times.
LDT with LSA

A

Advantage with other relations generates non-specific activation

B

Polysemy

C

Polysemy

D

Penalization with other words with different senses

E

Monosemy

F

www.elsemantico.com
Hypotheses

- A vector model like LSA can simulate the associative difficulty
 - In polysemic words
 - In abstract words
- A vector model can simulate the response to LDT in polysemic words
- Since responses to LDT are the opposite in Abstract words (to polysemic). A linguistic model like LSA cannot simulate the response of abstract words to LDT without introducing another source of activation (for example mental imagery).
Procedure

- Three simulations
 1. Introducing an invented word into semantic space at different points along the polysemy-monosemy continuum.
 2. With real polysemic-monosemic words
 3. With real abstract-concrete words
The analysis

- Extract semantic neighbors and analyze the similarities (cosines) between them and the reference word.
- Analyze Context Diversity within the vector with ranges and entropy measures.
First simulation

- LSA is trained with LEXESP corpus (Sebastián, Cuetos, Carreiras & Martí, 2000)
- An artificial nonsense word “noray” is introduced into the space in documents with two possible senses represented in different proportions: the sense of “traditional sport” and sense of “old neighborhood”
- The proportions of the two senses were
 - 30-0 (monosemy),
 - 25-5 (dominant polysemy)
 - 15-15 (equally probable polysemy)
 - 5-25 (dominant polysemy)
 - 0-30 (monosemy)
Results(I)

Mean of the 30 first semantic neighbors

The penalization exists for polysemic conditions
The pattern changed around neighbor 350 (cosine 0.2).
For the polysemic conditions, the penalization became advantageous from this point.
Scores on the dimension of the vectors in the three main conditions

- The effect of the penalization and the change of pattern may be due to the distributional properties of the vectors.
- The 15-15 condition was spread along all dimensions.
Results(I)

The position of polysemic condition (15-15) were often medium (scoring low on all the dimensions).
Second simulation

- Same as first simulation but with real polysemic and monosemic words extracted from other studies (Estévez, 1991; Jorge-Botana, León & Olmos, 2010).
- Controlled for frequency, concreteness and imaginability.
Results (II)

- Monosemy had an advantage for the first relations.
- The pattern changes around neighbor 550 (cosine 0.2) in favour of polysemic.

www.elsemantico.com
The polysemy condition have less global weight thus more entropy.
The spread among different contexts for polysemic words is a substantive fact.
Third simulation

- Same as second simulation but with real abstract and concrete words extracted from other studies (Duñabeitia et al., 2009).
Concrete words obtained an advantage for the first 400 relations.
The pattern changed around neighbor 400 (cosine 0.2) in favor of abstract words.
The abstract condition had less global weight thus more entropy.
The spread among different contexts for abstract words is a substantive fact.
Preliminary conclusions

- So, what can a model like LSA tell us about the empirical effects in question?
 - A model of a unique representation
 - An exclusively linguistic model.
Preliminary conclusions (I)

In *polysemy* and in *abstractness*, associative difficulty could be explained by the linguistic distributional properties of a unique representation.
Preliminary conclusions (II)

In **polysemy**, LDT responses could be explained by the unspecific activation produced by the linguistic distributional properties of a unique representation.
Preliminary conclusions (III)

- In the **Abstract** word condition, LDT responses couldn’t be explained by the linguistic distributional properties. Another source of potential activation is required.

 (perceptual representations?)
Preliminary conclusions (IV)

- In abstract word condition:
 - No additional source other than linguistic is needed as an explanation to account for associative difficulty.
 - No differences in cerebral activation between concrete and abstract in semantic tasks (Pexman et al., 2007).
 - Another source of activation is needed for LDT responses.
 - Differences in cerebral activation between concrete and abstract in LDT (Binder, Westbury, et al, 2005).
Thank you

www.elsemantico.com
Monitoring the penalization/advantage of lexical ambiguity in vector model representations

Guillermo Jorge-Botana, Ricardo Olmos & José A. León

Universidad Autónoma de Madrid